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Interactions between waves in a stably stratified fluid with a free or fixed upper 
surface may occur at  second order when the horizontal wave-numbers, ki, 
and frequencies, gi, of the three interacting waves satisfy the relations 

k,&k,+k,  = 0, C T ~ & ~ T ~ ~ U ~  = 0. 

These relations may be satisfied in the case when two free surface waves inter- 
act with an internal wave, or in the case when all three waves are internal, pro- 
vided that they do not all belong to the same mode. The theory is applied to 
situations which might be realized in the laboratory. 

1. Introduction 
During a seminar a t  the National Institute of Oceanography in 1963, Dr 

K. Hasselmann suggested that resonant interactions might occur between trains 
of internal and surface gravity waves in the ocean and it was this idea that 
motivated the work reported in this paper. 

Ball (1964) has shown that in the case of a two-fluid model, resonance is 
possible for second-order interactions between surface and interfacial gravity 
waves. In  this paper the theory is extended to wave interactions in EL continu- 
ously stratified fluid with particular reference to the possibility of internal wave 
generation. 

A number of theories of internal wave generation are well known and observa- 
tions of internal waves in the ocean, although few, lend support to their general 
conclusions. In  those parts of the ocean in which currents produce a strong 
vertical shear, notably in straits and in the region of the Equatorial Undercurrent, 
internal waves have been observed (for examples see Frassetto, Backus & 
Hays 1962; and Metcalf, Voorhis & Stalcup 1962). These waves are probably 
caused by instabilities depending on the value of the local Richardson number 
of the kind discussed by Taylor (1931), Drazin (1958), Miles (1961) and Howard 
(1961). Internal waves of tidal and shorter periods have been observed on the 
continental shelf (Summers & Emery 1963 mention a number of these observa- 
tions; see also Lafond 1959) and mechanisms by which they might be generated 
through the motion of surface waves over an uneven bottom have been de- 
scribed by Rattray (1960), and Cox & Sandstrom (1962). There is also some 
experimental (Sandstrom 1908) and theoretical (Yanowitch 1960; Cherkesov 
1962) work on internal waves generated by moving surface pressures, but a 
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general description or observational investigation of such waves has not been 
made. We shall discuss here a mechanism for the generation of internal gravity 
waves, which is quite different from any of the mechanisms mentioned, and 
which, for a source of energy, depends on interacting wave trains at  the free 
surface. 

Interactions between trains of surface gravity waves in a homogeneous fluid 
are fairly well understood (Phillips 1960; Longuet-Higgins 1962; Longuet- 
Higgins & Phillips 1962; Benney 1962; Hasselmann 1962, 1963 (two papers); 
Bretherton 1964). The interaction occurs at  third order when the wave-numbers, 
k,, and frequencies, r,, of four wave trains satisfy the conditions, 

and 

We shall show that resonant interactions between internal waves and between 
internal and surface waves may occur, and that the interaction occurs at second 
order,? therefore perhaps being more powerful in its modification of wave 
spectra than the surface-wave interaction in a homogeneous fluid. For inter- 
actions to occur, it  is necessary that three wave trains of different modes must 
exist in the fluid, and the wave-numbers, k,, and frequencies r,, must satisfy 
the conditions 

k,?k,rf:k,=O and cr,+cr,?cr,=O. (1) 

In the case of greatest interest, two of the wave trains belong to the surface 
mode, whilst the third belongs to an internal mode. In  this case the internal 
wave may be amplified by the interaction; that is, a transfer of energy from the 
surface to the internal wave may occur, and an internal wave generation mechan- 
ism will exist. 

The main aims of this paper are to establish that resonant interaction between 
internal and surface waves is possible, and to demonstrate the differences 
between interactions in a homogeneous and in a stratified fluid. These differences 
are not only a result of the great complexity of modes which exist in a stratified 
fluid, whilst only one, the surface mode, exists in a homogeneous fluid. In  the 
homogeneous fluid, interaction is effected through a forcing term in the free- 
surface boundary condition, We shall call this forcing term a surface force, 
although it is due to the coupling of terms of low order. In  a stratified fluid the 
interaction is effected both through this ‘surface force’ and through a forcing 
term in the equation of motion, a ‘body force ’. 

We do not attempt to describe the internal wave spectrum which may result 
from the interaction of surface waves in the ocean. Such a description, although 
desirable, is far beyond the scope of this paper and would require both the analysis 
of the modal system in a real ocean and a complete analysis of the interactions 
of all the possible modes of the system. Nor do we attempt to describe the result- 
ing internal wave spectrum or the modifications to a given surface-wave spec- 
trum in the particular example taken to illustrate the theory, that of a fluid 
with an exponential density profile. Cox & Sandstrom (1962) established that 

-f The second-order interaction of wave8 in the capillary and capillary-gravity part 
of the surface-wave spectrum has recently been sttidied by McGoldrick (1965). 
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the modal system in a fluid of such a density bears no resemblance to the real 
ocean system after the fist few modes, and for this reason we do not further 
the investigation of this particular case. 

2. The equations of fluid motion 
The equations of motion of a non-viscous, incompressible, stably stratified 

fluid of non-uniform density p in a Cartesian frame of reference when the Bous- 
sinesq approximationtS has been made, may be written as: 

Euler’s equations, 
Incompressibility DplDt = 0; 

po Du/Dt = - V p  - gpVz; 

and Continuity, v.u = 0; 

where the z-axis is taken to be vertically upwards and u = (u, v, w) is the fluid 
velocity,p the pressure, g the acceleration due to gravity andp, the mean density 
at level z, so that the density is given by p = p,(x) +p’. We shall suppose that 
the density is continuous and has continuous first and second derivatives. The 
effect of the Earth’s rotation is neglected. Wave-type solutions of the equations 
are investigated, subject to the following vertical boundary conditions: 

(a)  the vertical velocity w = 0 on a horizontal bottom plane z = - H ,  and 
either 

(4) w = 0 on a horizontal upper plane z = 0, or (b,) the pressure is constant 
at the free surface z = q(z, y, t) .  
The linearized form of the equations can be reduced to one equation for w, 
the vertical component of fluid velocity 

a 2  
- (V2W) -pgv;w = 0,  
at2 ( 5 )  

theLaplaceoperator. Inthecaseofawave-typesolutionw = W(x)expi(k. x- at) ,  
where k = (k,, k,, 0) is the wave-number vector, a is the wave frequency and 
x = (z, y, x ) ,  this equation reduces to an equation for the vertical velocity ampli- 

i 
k2 

dz2 a2 
PW+pg-  w = 0, 

tude W ,  d2W ~- 

with boundary conditions 

(a)  W = O  at z = - H  S e t l  

and either (b,) W = 0 at z = 0, i 
or dW gk2 

dz IT2 
( b )  - = - W  a t  z = O . §  

i- This is a slightly modified form of the Boussinesq approximation, taken here to 
simplify the algebra. Usually the po which appears in (2) is taken to be constant. 

$ Long (1964) has shown that care must be taken in making this approximation when 
applying the theory to internal waves. However if the approximation is not made at this 
stage (and in the examples relating to the exponential density gradient studied later, 
pH < 1) our conclusions remain unaltered. 

0 By imposing these boundary conditions we shall exclude the possibility of internal 
waves which propagate in the z-direction and k has therefore only horizontal components. 

47-2 
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The boundary condition (6,) is found by putting p = const. at z = 7 and using 
the kinematic condition DqlDt = w at the free surface, together with theequations 
of motion. 

The equations of set I are well known and their implications have been 
studied by a number of authors, notably Fjeldstadt (1933), Groen (1948)) 
Groen & Heyna (1958)) Yih (1960) and Yanowitch (1962). (These writers 
didnot make the Boussinesq approximation, but their results, quoted below, con- 
tinue to apply here.) Using the Sturm-Liouville theory, the solutions are found 
to be a set of eigenfunctions Wln(z) with corresponding eigenvalues k:, if ( k j c ) ,  
is held fixed. Alternatively the solutions may be expressed as a set of eigen- 
functions WZn(z) with corresponding eigenvalues (k,/g,)Z, if k2 is held fixed, thus 
defining a set of frequencies cm corresponding to a given wave-number k.  
(Since the eigenvalue appears in the boundary condition (b,), it  is not possible 
to apply the Sturm-Liouville theory directly in this latter case, but a similar 
theory applies, see Yanowitch.) The sets of eigenfunctions are complete. We 
shall later refer to a pair (k, c) of wave-number and frequency as being an eigen- 
value of set I. 

In addition to these results a theorem proved by Groen & Heyna will be used. 
There exists an upper bound to the frequencies of simple harmonic small-ampli- 
tude gravity waves which have their maximum amplitudes below the free 
surface. The upper bound is the maximum value of the quantity ,/(gp), the 
stability or Brunt-Vaisiila frequency in an incompressible fluid, this being the 
limit as k ,  the wave-number, tends to infinity. Thus the frequency of internal 
waves is bounded. 

3. The equations of resonance 

resonances, we look for a solution to the equations of motion of the form 
Following the approach of Benney (1962) in the analysis of surface-wave 

and the real parts of the terms appearing on the right-hand side of the equations 
are understood to be taken. It will be shown that this solution may represent a 
system of waves, where the velocity ujeikj.* is the contribution to the velocity 
field from the j t h  wave and pi e%ex is the density change caused by the j t h  
wave. 

We suppose that this solution reduces at first order to a triad of waves and look 
for interactions at second order between the components of the first-order 
triad. 

Substitution into the equation of motion and reduction of the equations is 
carried out in Appendix 1. This leads to an equation for wj, the vertical 
velocity component of the j t h  wave, 



otherwise, 
with boundary conditions 

(a )  w j =  0 a t  z = - H  

satisfy the relation 

(b,) wj = 0 a t  x = 0 

or 
B,,(t) at z = 0 if there exist k,, k, such 

that kj f k, k, = 0, (b2) z3 -t 9% wj = 
a 2  aw. 

k, k, k, = 0. ( 7 )  
If a wave-type solution of the problem is possible, we may write 

u, = Um(z, t )  e-iumt and pk = II,(x, t )  e--igmt, (8) 

where (k,, F,) is an eigenvalue of set I (and similarly for u,, etc.). (It was shown 
in 5 2 that, given k ,  a set of frequencies may be found so that (k ,  a)  is an eigen- 
va.lue. cr, is any one of the possible set of frequencies corresponding to k,.) 
Now the terms A,, and B,, of set I1 may be written in the form 

A,, = &,(z, t )  e-Wm+gn)t  +a;, (2, t )  e - i (~ rn -~nn) t  

(9) 

say, and B,,, = b$,(t) e- ibm*gn)t ,  (10) 

where ak, contain second-order products of pairs of components of U,, U,, 
n,, n,, etc., and bk, are definedin a similar way but evaluated at z = 0. 

Hence the problem is reduced to one of solving the set of equations 

= a$,(z, t )  e-i(gm+v&, 

with boundary conditions I 
(a )  wz = 0 at x = - H  

(b,) w, = 0 a t  x = 0 
and either 

\ Set 111 

or 

for wl of the form Wi(x, t )  e-{@. 
Wj is the amplitude of the vertical velocity component of the lth wave as a 

function of time and vertical co-ordinate. The terms on the right-hand side of 
set I11 represent interactions between other waves of the system which have the 
same wavelength as the lth wave. We wish to examine circumstances in which 
these interactions can contribute towards the amplitude of the lth wave. 
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It will be noticed that I11 (i) contains an interaction term on the right-hand 
side, and this is equivalent to an effective ‘body force’ acting on the system in 
addition to the ‘surface force’ which may act at the free surface and which is 
represented on the right-hand side of (b2 ) .  This body force is quite absent in the 
case of interacting surface waves in a homogeneous fluid, since product (or inter- 
action) terms do not occur in the governing equation of motion, the Laplace 
equation. (The second-order terms representing the effective body force are 
partly a result of the vorticity generation in the fluid of non-constant density, 
as may be seen from examination of (A 2), Appendix 1 .) 

The solutions of set I11 are discussed in Appendix 2. It is shown that if there 
are waves in the system with wave-numbers and frequencies such that the 
resonance conditions 

k,=&k,rtk,, and cz= +em&c, (11) 

are satisfied, then interaction may occur provided that certain coefficients are 
non-zero, and the amplitude of each of the three waves will slowly change with time. 

If (k,, rm) and (k,, en) are eigenvalues of set I corresponding to a surface wave 
mode and (ki, ci) is an eigenvalue of an internal mode, then the interaction 
represents a transfer of energy between two surface waves and an internal wave; 
if all the eigenvalues correspond to internal modes, the interaction represents 
an energy transfer between internal waves. 

It may be shown algebraically that in a fluid of general stable density struc- 
ture it is possible to find a pair of surface waves and an internal wave which inter- 
act. It is, however, simpler to argue from a diagram (figure 1) demonstrating 
the interactions, similar to that used by Ball (1964) in the discussion of inter- 
actions in a two-fluid system. The ‘cone ’ E is the locus of surface wave-numbers 
and frequencies (kz, k,, c) E (k, r) say. A is a point on E representing aparticular 
surface wave (km, em). The set of complete ‘cones’ 11, I,, 13, ... (only three are 
shown) represent internal wave modes, each one representing a different mode, 
but with their origin translated from 0 to the point A, so that any point on one 
of these cones having an internal wave-number and frequency (kl, rL) will, 
in the translated co-ordinates shown, be a t  the position (k,+k,, cl++a,). 
Hence the points of intersection of the cones I,, 12,13, ... with E will represent 
surface waves (kn, en) such that k, = kl + k, and r, = rt + crm for some internal 
wave (kz, vL) and, these being the resonance conditions, the points of intersection 
of I,, I,, 13, . . . and E represent surface waves which may interact with the surface 
wave represented by A and an internal wave. The difference between surface 
wave-numbers and frequencies must be taken to satisfy the resonance conditions. 
The planes PI, P, are given by c = em -+- l/(gpm,,), where ,urn,, is the maximum 
value of p, and by Groen’s Theorem, the two planes are the limits between which 
11, I,, 13, . . . must lie. Since J(gpmax) is usually very small in the ocean compared 
with surface-wave frequencies, the planes P, and Pz are not far separated, and 
the curves of intersection of 11, I,, 13, . . . and E do not differ greatly from circles. 
For interaction i t  is therefore necessary that surface waves of almost equal 
wave-numbers must intersect a t  some angle 8, and internal waves of long 
wavelength will take part in the interaction if 0 is small. 
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It is also easy to demonstrate graphically that a set of three internal waves 
may be found which satisfy the resonance conditions, provided that the waves 
do not all belong to the same mode. 

I 

FIGURE 1. Interaction diagram. The curves of intersection of the internal mode cones 
I , ,  I , ,  Ia, . . . , with the surface mode cone E, represent surface waves which can interact 
with the surface wave represented by the point A and an internal wave. 

4. Examples 
The results of the analysis carried out in Appendices 1 and 2 have been 

applied to two cases to obtain some idea of the importance of the interactions. 
It has been assumed that the density is an exponential function of depth so that 
,u is constant, and that the density difference between the top and bottom of the 
fluid is small compared with the mean density (pH < 1). The surface waves are 
supposed to be in phase (so that fi and f2 in equation (A9) are real) and in deep 
water (so that tanh Ic,H = 1, i = 1,2). In this case the eigenfunctions of set I of 
the surface mode are proportional to sinh Ici ( z  + H )  and those of the internal modes 
are proportional to sinh,(z+H), where n is the number of the internal mode. 
A, is approximately equal to nn/H (see Lamb 1932, $235). It is also assumed 
that the initial growth rate of a wave resulting from the interaction of two others 
is maintained, so that variation in the wave amplitudes of the other waves is 
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neglected. This assumption is probably valid if the change of wave amplitude 
of an internal wave resulting from the interaction between it and a pair of surface 
waves is considered, at least until the amplitude of the internal wave is com- 
parable to that of the surface waves, since the energy density of an internal 
wave is much less than that of a surface wave of equal amplitude if the density 
gradient is small, and thus the energy extracted from the surface waves, and 
therefore the change in their amplitudes, will be small. 

Case 1 

Suppose that a pair of surface waves of amplitudes a,, a,, and wave-numbers 
k,, k,, intersect at  an angle 8, and interact together with an internal wave of the 
nth mode. Then, if ( p H )  ( k , H )  is not large compared with unity for i = 1,2, 
and the stability frequency, 2j(gp), is much less than the frequency of the surface 
waves (which implies that for interaction k, is approximately equal to k, ) ,  
it  is found that the rate of change of the maximum amplitude of the internal 
wave motion, A ,  is given approximately by 

. (a, k l )  (a, k,) (gp)Q Hnn sin $6 
(n2 jry2 + k2H2)$ 

A = -  

k2H2 + n2n2 
41%; H 2  + n2n2 3+2cOs8+(- 1)n+1.3.---- (1 + cos 0 4 ,  

where k is the internal wave-number, approximately 2k, sin 48. (In deriving 
this expression it is found that the surface and body forces of the interaction 
play roles which are comparable in magnitude. The terms 3 + 2 cos 8 in the major 
brackets in the expression for A arise from the surface boundary condition 
whilst the remainder of the terms in the brackets represent the effect of the non- 
linearity of the equation of motion.) 

For example, if n = 1 and k,H = jry, the maximum amplification rate occurs 
for surface waves intersecting at  about 45" when 

A = 0.36a1a,k,(gp)~ 

and if (gp)* = 1 sec-l and a2k2, the maximum slope of the second surface-wave 
train, is 0.1, then the internal wave amplitude will be equal to that of the first 
surface wave after an interaction time of about 28sec. 

For a laboratory experiment, it is usually not the amplification rate which is 
significant, but the amplitude which might be achieved by an internal wave 
after the continued interaction of surface waves over a fetch, D. This wave 
amplitude, A ( D )  is equal to AD/c,, where cg is the group velocity of the internal 
waves, and is given by 

If k,H = jry and n = 1, the maximum wave amplitude results from the interac- 
tion of surface waves intersecting at  about 88". For 8 = go", close to the maxi- 
mum, A ( D )  = 1*08(a,k,) (a,k,)D, 
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which is large, for if the surface wave slopes are only 0.1, the internal wave 
amplitude will be over a centimetre after interaction over a fetch of only one 
metre. The practical difficulties of testing the prediction experimentally are, 
however, considerable, since the surface waves must be dissipated without 
significantly affecting the density gradient. If k1 H = 271 and n = 1,  the maximum 
of A ( D )  is found at 8 = 95" 15'; for 8 = go", A ( D )  = 1.03(a1k1) (a,k,)D. 

Case 2 

This is the case of interaction between three parallel internal waves. To give 
the example physical significance, it  is supposed that waves are generated in a 
channel by the oscillatory motion of a flap hinged about a horizontal axis at  
mid-depth z = -+H. In  this case all the waves generated have the same fre- 
quency, IT, and provided that the flap motion is small, all the waves belong to 
the odd modes (so that n is odd), and the amplitudes of the waves may easily be 
found in terms of the flap amplitude.? 

The following results are found. 
1. The resonance conditions may be satisfied, given two waves of frequency 

g ,  and horizontal wave-numbers k,, k,, and model numbers n,, n2, only by the 
presence of a third wave of frequency 2 c ,  wave-number k, + k., and model number 
n,-n,. The interactions between the set of odd modes generated by the flap 
result in the generation of even modes. (Experimentally these would grow with 
distance down the channel and would be quite distinct from any even modes 
generated by the finite motion of the flap.) 

2 .  For a given value of the stability frequency J(g,u), interaction may occur 
only for certain values of the frequency, c, given by 

where M and N are positive integers and 2M + 1 ,  2M + 1 + 2N and 2N are the 
model numbers of the interacting triad. 

3. The lowest even mode grows most rapidly as a result of the interaction. 
The wave of largest amplitude which may be produced as a result of interaction 
over a distance D (on the assumption that the initial growth rate is maintained) 
is that of the second mode resulting from the interaction of the 3rd and 5th 
modes when g,u/g2 = 5. The maximum amplitude of the wave occurs a t  levels 
x = - $H, - $H and is g ( a 2 / H 2 )  D. 

5. Conclusion 
Resonant interactions may occur at  second order between a pair of surface 

waves and an internal wave in a stably stratified fluid, and interaction may also 
occur between three internal waves of different modes. The interaction coupling 
is made through effective body and surface forces which result from the presence 
of the waves when the resonance conditions are satisfied. The calculations have 

t If u is the amplitude of the flap a t  the upper boundary of the fluid, then the maximum 
amplitude of the nth wave mode is 8u/{(gp/(r2 - I)* nW}. 
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been applied to determine the magnitude of waves which would result from inter- 
actions in situations which might be realized in the laboratory, but a description 
of interactions in a continuous spectrum of waves belonging to many different 
internal and surface modes in a fluid of density structure resembling that of the 
ocean has not been attempted. Far more theoretical, experimental, and observa- 
tional work remains to be done before any conclusion may be made about the 
importance of wave interactions in modifying the spectra of ocean waves, 
but that such complex interactions exist between waves in the ocean thermo- 
cline and those at the sea surface is possible, and internal waves may well be 
generated by surface wave interactions. 

An inaccuracy in Ball’s (1964) paper on interactions between surface and 
interfacial waves in a two-fluid model is noted in Appendix 3. 

It is a pleasure to express my thanks for the help and encouragement of 
Dr 0. M. Phillips, who was my supervisor during the time that much of this work 
was done, and to Dr F. P. Bretherton, with whom I have had several enlightening 
discussions. 

Appendix 1 
Look for a solution of equations ( 2 ) )  (3), (4) of the form 

u = C uj(z, t )  e%.x, p’ = Cp;(x, t )  ei9.X) (A1) 
i 3 

where real parts are to be taken, and u, = (ui, -uj, wi). 
Combining ( 2 ) )  (3) and (4) and substituting for u, p’, we find 

where 
Y a  V) u- (u .V)  wx] - - - [ (u  . V ) p ’ ]  

at Po a Y  
{(w. V) w - (u. V) wz}+ v2 

a 3  
S -- 

- ax a~ at 
and 

Each of the terms on the right-hand side of (A2) is a second-order sum of the 
products of the components of the real parts of u,e%.H, their derivatives, 
and the real part of pi ei%Sx and their derivatives. Hence the right-hand side of 
(A2) may be represented by a sum 

al(x, t )  eikleX[, 

where I is summed over all wave-numbers k, such that k, = 3- k, rf: k, and m and 
n are summed over all the primary wave-numbers present. a&z, t )  is second order, 
at least. (A2) represents the forcing of the first-order velocity components (the 
terms on the left-hand side) by the second-order interactions, acting as an effec- 
tive body force in the fluid. 

If for some k, there exist k, and k, such that ki = rf: k, rf: k, then for this 
k, we may take components of (A2) and write 

w = v x u = (W5) wy, wz). 

1 

a t2  a22 wi-k;wj) -gpk; = A,&, t ) ,  

where A,, = a#&,. 
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The boundary condition (b,)  that p = const., P say, at the free surface x = q(x, t), 
is evaluated in terms of wj. Let the pressure p = po+pf ,  where 

po(z) = P- gp,(z’)dz’. Lo 
Now at the free surface z = 7, the pressure is constant, so 

Po(7)  +P’(Z, Y, 7, t )  = p, 
and expanding about z = 0 

po+q-+t-7 dP0 1 ,d2Po dz2+pf+7-+higherorders aP‘ = P at z = 0, 
dz az 

and hence 

dz 

= S,, say. (A5) 

ay /a t+ (u .V)y  = w a t  z = 7 (A 6) 

Expanding the kinematic condition 

about z = 0 and combining this with (A5) and using the equations of motion 
and (A 1) we find 

where 

at 
[(w . V) w - (w . V) w*] + v; a2  s 

3 -  ayat 

Now expand 7 in the form 7 = C yjez%.x, where qj ( t )  is the amplitude of the sur- 

face disturbance of the j th  wave, and pressure, p’, into similar components due 
to the wave motion, p’ = Cpieikj.X. Then if we include on the right-hand side 

of (A 7) only terms of second order a t  most, the right-hand side is a second-order 
sum of products of pairs of components of velocity, pressure, density and surface 
displacement and their derivatives, and as before, if kj = & k, & k, for some k,, 
k,, components of (A 7) may be taken to give 

j 

j 

(As) 
a 2  aw, 
at2 a2 
-_ +gk3wj = B,,(t) at x = 0. 

This equation represents the driving of the vertical velocity components of 
the j t h  wave by an effective surface force arising from the interactions of the 
mth and nth wave trains at second order. 

Por example, consider the interaction of two wave trains with vertical velocity 
components 

W ,  =~, (z ,~ )cos (~ , .x -cT ,~ ) ,  W ,  = ~ ~ ( z , ~ ) c o s  (k,.x-gZt) (A 9) 

to generate a third wave train of wave-number k = k,+sk2 and frequency 
cr = cr, +scrz, where s is + 1 or - 1. For simplicity we takef, andf, to be real. 
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second order generated by these waves has an amplitude 
It is found that the rate of change of the vertical component of vorticity at 

where 

The upper boundary condition (A 8) becomes 

where 

Appendix 2 
We wish to solve the equations of set I11 for w, in the form w, = Wi(x, t )  e-i'it, 

where cr, = a, & cn and agn(x, t )  is written al(x, t )  for convenience. There are two 
distinct classes of solution depending on whether or not (k,, a;) is an eigenvalue 
of the equations of set I. We may expand al(z, t )  as a sum of eigenfunctions of 
set I for fixed k2/a2 = kf/a;. This is possible since the set of eigenfunctions, 
W,(z) ,  say, with corresponding eigenvalues k,, are complete; 

@ x ,  t )  = X an(t) wn(z). 
n 

The a,(t) are given by 

(An equivalent expansion in terms of eigenfunctians for fixed k2 is also possible.) 
Now suppose that the amplitudes of the wave trains present in the fluid, and 

therefore the maximum values (the amplitudes) of their vertical velocity com- 
ponents, change only slowly as a result of the interactions. This leads to  an 
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approximation equivalent to that made by Benney in the analysis of surface 
interactions. We suppose that the change in amplitude of the vertical velocity 
components during one oscillation of the wave is much less than the mean 
amplitude of the vertical velocity component itself during the oscil1ation.t If this 
approximation is made, and it may be seen a posteriori that it  is a valid approxi- 
mation here, the solutions of set I11 are as follows. 

(1) If (k,, vl) i s  not an eigenvahe of set I ;  boundary condition (b,) 

(2) If (kl, al) is  not an eigenvalue of set I ;  boundary condition (b,) 

where U(x, t )  satisfies 

with boundary conditions 
w = O  at z = - H  

and 

(3) If (k,, a,) is  an  eigenvalue of set I with corresponding eigenfunction WN(x) 
and boundary condition (b,) 

w, = (a(t) W, + a,(t) W,) e-iult, 
n+N 

where, if 

and 

Here we note that a( t )  is not determined uniquely. Only &(t) is determined by the 
boundary conditions. a( t )  is in fact determined fully by the initial conditions 
and the subsequent value of &(t) found above. Moreover, if aNf2PN is real, then 
d is pure imaginary and the effect of the interaction is simply to change the phase 
of the wave corresponding to the eigenfunction wN; only if a N / 2 , 8 N  is pure imagi- 
nary does a pure growth in amplitude occur. d. = 0 if aN = 0, that is if the co- 
efficient of the eigenfunction WN corresponding to the eigenvalue (,%,a) in the 
expansion of the term a(x, t )  as a series of the eigenfunctions is zero. 

t Some adjustment of this statement is obviouslyrequired when one of the velocity ampli- 
tudes is initially zero or becomes zero. This is the situation when wave generation occurs, 
that is when initially no wave exists with the frequency and wavelength excited by two 
interacting wave trains. If it is found that the solutions are not affected by such a vanish- 
ing of the amplitude of the vertical component of a wave velocity, since it is the ratio of 
the wave period to the time scale of the amplitude changes which must be small. The 
solutions are valid even when wc is initially zero, provided that the terms cc,(t) are slowly 
varying functions of time. 
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and boundary condition (b , )  
(4) If (k l ,gz )  i s  an eigenvalue of set I with corresponding eigenfunction W,(Z) 

where V(x)  is a particular integral of 

which is linearly independent of W,, and W* is a solution of 

which is linearly independent of W,. (This second-order differential equation for 
w has, in general, two independent solutions for given k, and ct. One satisfies 
both boundary conditions of set I. The other does not.) If p, is defined as in (3) 
above, then a is given by 

where V(0)  is the value of V ( z )  a t  z = 0, etc., 

aN 2ici 
p=----  PN, 

0-; oi 

As in solution (3), the coefficient a( t )  is not fully determined. 

Appendix 3 
This is an appropriate place to correct a slight inaccuracy which has been 

found in Ball’s (1964) paper. In  the discussion of interactions between a pair of 
surface waves and an interfacial wave in a two-fluid system, interactions between 
the waves when all are moving in the same direction are excluded. To exclude 
this possibility in general is clearly incorrect, for if the depths of the two fluids 
are both large compared with the wavelength present and the fluid densities are 
p1 and p z  (pl  < p2), both the dispersion relations (which are c$ = gk,, i = 1, 2, 
for surface waves and r$ = gk,(p, -p l ) / (p l  + p z )  for interfacial waves), and the 
resonance conditions for parallel waves (g1- cZ = g,, k, - k, = k,), are satisfied 

(2 ) Cr1=-crz ,  kl=-,Jcz, u,= ( ~ - l ) c r z ,  k, = 2 - 1  k,, PZ P; by 

P1 P1 

for any a;, k, which satisfy the surface dispersion relation. For interactions to 
occur between a given surface wave and another surface wave and an interfacial 
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wave, all travelling in the same direction, i t  is necessary that the group velocity 
of the given surface wave (dcrldk, the slope of the curve OE,, in figure 1 of Ball’s 
paper) shall be less than the limit of the group velocity of interfacial waves as 
their wave-number tends to zero, as may be seen from an examination of Ball’s 
interaction diagram. It seems unlikely, however, that this case is of much prac- 
tical importance, either because the circumstances in which the conditions are 
satisfied do not occur naturally, or because the interaction coefficients which 
determine the rate of energy transfer between the waves are so small. 
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